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ABSTRACT

A common discussion subject for the male part of the populationin particular, isthe prediction
of next weekend's soccer matches, especially for the local team. Knowledge of offensive and de-
fensive skillsisvaluablein the decision process before making a bet at a bookmaker. Inthisarticle
we take an applied statistician’s approach to the problem, suggesting a Bayesian dynamic gener-
alised linear model to estimate the time dependent skills of all teamsin aleague, and to predict next
weekend's soccer matches. The problem is moreintricate than it may appear at first glance, aswe
need to estimate the skills of all teams simultaneously as they are dependent. It is now possible
to deal with such inference problems using the iterative simulation technique known as Markov
Chain Monte Carlo. We will show various applications of the proposed model based on the En-
glish Premier League and Division 1 1997-98; Prediction with application to betting, retrospective
analysis of thefinal ranking, detection of surprising matches and how each team’s propertiesvary
during the season.

KEYWORDS: Dynamic Models, Generalised Linear Models;, Graphica Models; Markov Chain Monte
Carlo Methods; Prediction of Soccer Matches.

1 INTRODUCTION

Soccer isapopular sport al over theworld, and in Europe and South Americait isthe dominant spec-
tator sport. People find interest in soccer for various reasons and at different levels, with a clear dom-
inance for the male part of the population. Soccer is a excelent game for different forms of betting.
The outcome of asoccer match depends on many factors, among these are home-field/away—field, the
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effect of injured players and various psychological effects. Good knowledge about these factors only
determine the final result up to a significant, but not too dominant, random component.

Different models for prediction of soccer matches for betting have existed for along time. A quick
tour around the Web, perhaps starting at ht t p: // dmi www. ¢s. t ut. fi/ri ku, showsanimpressive
activity with linksto small companies selling ready-to-go PC programs for prediction and betting, dis-
cussion groups and bookmakers who operate on the Web. The most popular ideas in the prediction
programs are to consider win, draw and |oss sequences, goals scored over five matches, and the points
difference in the current ranking. Most of the programs have a Bayesian flavour and alow the user to
include hig’her expert knowledge in various ways. The (pure) statistical side of soccer isnot so devel-
oped and widespread. Ridder, Cramer and Hopstaken (1994) analyse the effect of ared cardinamatch,
Kuonen (1996) model knock-out tournaments, and Lee (1997) provides asimplified generalised linear
model with application to final rank analysis and Dixon and Coles (1997) and Dixon and Robinson
(1998) provide a more comprehensive model.

Inthisarticle, we model the results of soccer matches played in aleague, where the teams play against
all each other twice (home and away) relatively regularly and during alimited time period. Wewill use
the history of the played matches to estimate what we think are the two most important (time depen-
dent) explanatory variables in a Bayesian dynamic generalised linear modedl; the attack and defence
strength. It is more intricate than one might think to estimate the properties like attack and defence
strength for each team. Assumeteam A and B play against each other with theresult 5 — 0. Oneinter-
pretation of thisresult isthat A has alarge attack strength, another that B has alow defence strength.
Thepropertiesfor A and B conditional on the result are therefore dependent. Aseach team play against
al the other teams in aleague, we soon reach full dependency between the (time dependent) proper-
ties for all teams. We can analyse such problems using Markov chain Monte Carlo (MCMC) tech-
niques (Gilks, Richardson and Spiegelhalter, 1996) to generate dependent samples from the posterior
density. The proposed model and the power of MCMC can be used to make predictions for the next
round in the league and answer other interesting questions as well, like; What is the expected ranking
at the end of the season? Was Arsenal lucky to win the Premier L eague 1997-98?

A simplified and stripped off version of our model issimilar to the generalised linear model devel oped
independently by Lee (1997). Dixon and Coles (1997) and Dixon and Robinson (1998) presented a
more comprehensive model than Lee (1997), trying to mimic time-varying properties by down-weighting
thelikelihood. They where not ableto provide acoherent model for how the properties develop intime.
In this paper we provide a Bayesian model which model the time-variation of all properties simultane-
oudly, present a new parametrisation and ideas in goal-modelling, and show how we can do inference
and do retrospective analysis of a season using the power of MCMC. We need a joint model for the
properties in time to do retrospective analysis of a season, to be able to estimate each teams proper-
ties at time ¢ using data from matches both before and after time ¢. Our approach provides a coherent
model whichiseasy to extend to account for further refinement and devel opment inthe art of prediction
soccer matches. Other similar sports problems could be approached in the same manner.

The rest of the article is organised as follows. We start in Section 2 with the basic explanatory vari-



ables and derive the model step by step. Section 3 describes how we estimate global parameters using
historical data and do inference from the model using MCMC techniques. In Section 4 we apply our
model analysing the English Premier League and Division 1 1997-98, with focus on prediction with
application to betting, retrospective analysis of thefinal ranking, locating surprising matches and study
how each teams properties vary during the season.

2 THE MODEL

In this section we derive our model for analysing soccer matches in aleague. We start with the ba-
sic explanatory variables, continue by linking these variables up with a goal moddl and model their
dependency intime. In Section 2.4 we collect all piecesin the full model.

2.1 BASIC EXPLANATORY VARIABLES

Thereareavariety of explanatory variablesthat will influence the result of aforthcoming soccer match.
Which factors we should include in the model depends on what kind of datathat is available. To keep
the problem simple, we will only make use of the result in a match, like home team wins 3 — 1 over
the away team. We therefore ignore al other interesting data like the number of near goals, corners,
free kicks and so on. Our next step isto specify which (hidden) explanatory variables attached to each
team that will influence on the match result.

Thetwo important properties of each team are their defending and attacking skills. Defence and attack
strength is represented as the random variables d and a respectively. A high value of d and a means a
good defence and attack respectively. Let e4 = (a, d) 4 denote the properties for team A, and further
let 14,4 and o7, , be the prior mean and variance for a 4, and similar for the defence strength and the
other teams.

2.2 THE GOAL MODEL

The next step isto specify how theresult (x 4.5, y4,5) depends on the properties of home team A and
away team B. A reasonable assumption, is that the number of goals A makes (x 4,3) depends on A's
attack strength and B’s defence strength. Similarly, the number of goals B makes (y.4,3) depends on
B’sattack strength and A’s defence strength. Additionally, we include a psychological effect; Team A
will tend to underestimate the strength of team B if A isastronger teeamthan B. Let A = (aa +
da — ap — dp)/2 measure the difference in strength between A and B. We assume further that

d
zAB |(ea,e) = zaB|aa—dp—vAsn

d
yapl(ea,ep) = yap|ap—da+yAas,



where v isasmall constant giving the magnitude of the psychological effect. We assume the strength
of team A and B are not that different since we analyse teams in the same league, so it reasonable to
expect v > 0. (The opposite effect (v < 0) might occur if team A is so superior compared to team B
that they develop aninferiority complex facing A, which do not expect will happen in the sameleague.)

To motivate our probability law for 4 g and y4 g, we display in Figure 1 the histogram of the result
in 924 matches in the Premier league 1993-95. The histogram and nature of the game itself suggest to
afirst approximation aPoisson law for =4, g and y 4, . Thus, as afirst approximation we may assume
the number of goals conditioned on the teams’ properties to be Poisson distributed with mean Af,)ﬁ

and A%,)B' where

log )\&\T’)B =c® ya4—dg— YA AR, and log )\(j{)ﬁ =c® fap—ds+ YAusp. (D)

Here, ¢(®) and ¢¥) are global constants describing (roughly) the average number of home and away
godls.

Although independence of z 4 g and y 4 g is verified empirically to be quite reasonable (Lee, 1997), it
does not imply that z 4 g and y 4, g are independent conditional on (e 4, er). Dixon and Coles (1997)
proposed therefore to use the joint conditional law for (z 4,5, y4,5)
g1 (xA,B,yA,B | ASV)B,A%)B) =K (xA,B,yA,B \ AX)B,A%)B)
xPo (w4 | A{)) Po(yan | ATy) @

where Po (mA,B \ A(X’)B) isthe Poisson law for - 4, p with mean A%”)B, and « isacorrection factor given
as

(1 40T faap=yas=0,
10105, if zap=0,y4p=1,
i (zamyas [ X7p20) =4 1- 0l ifzap=1yap=0,
1.1 ifzap=yan=1,
[ 1 otherwise.

The correction factor « increase the probability of 0 —0and1 — 1 atthecostof 1 —0and 0 — 1. All
other joint probabilities remain unchanged. Note further that the (conditional) marginal laws of z 4 g
and .1, from Eq. (2) equals Po (2.4, | X)) and Po (1 | A ). respectively.

We found it necessary to modify Eg. (2) in two ways, The first modification is about the Poisson as-
sumption, the second is a robustness adjustment.

Although the Poisson model seems reasonable, it may not be the case if one of the teams make many
goas. Thisis highly demotivating for the other team, and in most cases imply a contradiction with
our underlying model assumption that the goal intensity does not depend on the goals made during the
match. We correct for this by truncating the Poisson law Po (xA,B | A(j’;)ﬁ) (and similar with y 4 )
in Eq. (2) after 5 goals. Denote by 77, the resulting truncated law. Theresult of 7 — 0 and 6 — 5 will
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be interpreted as 5 — 0 and 5 — 5, respectively. The goals each team make after their first five are
uninformative for the two team’s properties.

It isour experience that the match result islessinformative for the properties of the teamsthan Eq. (1)
and ;; suggest. We found it necessary to use a more model-robust goal model by forming a mixture
of laws,

" (xA’B’yA’B | A(fi)B’/\(i)B) = (1=emy, (xA,BayA,B | AS:,)BaAEj/,)B)

+ emp (2amyan | expe@)expe®)). @

Here, e is a parameter with the interpretation that only (1 — €) x 100% of the “information” in the
match result is informative concerning e 4 and e, and the remaining € x 100% is not informative.
Thenon-informative part of m, usetheaverage goal intensities, exp(c(®)) and exp(c®)), and 7, shrinks
therefore 7, towards the law for an average match. Thevalue of € isin Section 3.2 found to be around
0.2.

2.3 TIME MODEL

It is both natural and necessary to allow the attack and defence variables to vary with time. For the
discussion here, assumethat ¢ and ¢ > ' are two following time points (number of days from acom-
mon reference point) where team A plays amatch. Let us consider the attack strength where similar
arguments are valid also for the defence strength. We need to specify how a?, (superscripts ¢ for time)
depends on a,';; and possibly on previous values. Our main purpose is to predict matches in the near
future, so only a reasonable local behaviour for a4 intimeis needed. As afirst choice, we borrow
ideas from dynamic models (West and Harrison, 1997), and use Brownian motion to tietogether a 4 at
the two time points ¢’ and ¢”, i.e. conditional on {a’,, ¢ < '}

' d

’ " ’ Ta. A
af £ aly+ (Baalt'/7) = Baalt' /7)) L

VI=-91-9/2)

(Recdll that o , isthe prior variance for a1.) Here, {B..(t),# > 0} is standard Brownian motion
starting at level zero and where the subscript marksthe belonging to the attack strength for team A. The
last factor isascaling factor we motivate for in the next paragraph. The characteristic time parameter 7
iscommon to all teams and gives theinverse loss of memory ratefor a!y, Var(a’y —a',) o2 , /7. We
model the attack and defence strength for all teamsasin (4) and assume the Brownian motion processes
are independent.

(4)

The common parameters v and 7 control the psychological effect and the loss of memory rate. These
parameters have a nice interpretation if we consider the conditional (on the past {¢ < ¢"}) expected
value and variance in the Gaussian conditional density for log Af,),’;” (and log A%’y),;,t”). If we assume
for smplicity thet 0, 4 = 04,4 = 04, = 04,8 = 00, WeObtain

E(log A" | past) = @) + o — dls — Al



and

f” o fl
Var (1og A7) | past) = 203 .

()

Thus, ~ adjust the conditional expected value, and 7 controls the conditional variance of log A(AI’)B.
The scaling with v in (4) makes~y and 7 orthogonal in this sense. Weinterpret — and v asthe main and
secondary parameter of interest, respectively.

2.4 FuLL MODEL

We can now build the full model based on the previous assumptions. The properties of each team
obey (4) for the time development and (1) for the result of each match. We only need to keep record of
which teams that play against each other, when and where. Figure 2 shows the situation schematicly
when four teams play 3 x 2 matches at timei—4; and ¢, and the fourth round at time 5 is not played.
(We choose to play the matches at the sam » s, so the notation is simplified. In practice thisis not
the case.) The graph is called the directed acyclic graph (DAG) (Whittaker, 1990) and the directed
edges in the graph show the flow of information or causal relations between parent and child nodes in
the graph. If we construct the corresponding moral graph of Figure 2, wewill find apath between each
node in the graph soon after the league starts. We must theref ore do inference for al the properties for
each team and time point, simultaneoudly.

We write 0 for the al variables in the model and keep for the moment parameters e, v and 7 fixed.

The variables are; The properties eA, etj_g, e’, eD at time ty, the result of the match between A and B,

C and D at time t, the properties €'}, €'}, el!, €'}, a time t;, the result of the match between A and
C,Band D attimet;, and so on. Thejoint density for all variables in the model 0 is easy to find if
we make use of Figure 2. Thejoint density of 8 isthe product of the conditional density of each node
given its parents. By using 7 (- | -) asageneric notation for the density of its arguments, and indicate
the time through superscripts, we obtain starting from the top of the graph where each line of Eq. (6)

corresponds to each row of the graph in Figure 2,
(6) = () w(e) m(ef) m(e)
XW(TAB’Q/AB‘EA’G%]) (Tt(*ODaUAB|e(*ae%)
(€]} | ef) m(el} | e) m(ed | eh) m(el) | efy)
X 7r(”"’A,Ca?/A,c | eA’eC) W("B DvUB e ep)

™

X T

Hereis 7(e'9) the prior density for e 4, which will be commented on in Section 3.2, w(xA B,yA B

€', e'9) isthe mixture law given in Eq. (3) where >\(A,)B and >‘(A,)B are computed from e'{ and e’3.

Further is (e"} | €') equals (a’} | a'y)w(d'} | d'}) where
t1 —t
f41 ‘(Lfg ~ N((],fg, 17’ 00’2714)
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and similar with d'} | d'9. We denote by N(y, o) the Gaussian distribution with mean 1 and variance
o?. Therest of thetermsin 7(8) have similar interpretation, only the teams and times differ.

We have not included the propertiesinbetween time g, ¢, to and ¢3, astheir (conditional) distributions
are known to be Brownian bridges conditiona on the properties at time ¢y, . .. , t3.

To do inference for the properties of each team conditional on the observed match results, we need the
conditional (posterior) density derived from (6). It ishard to analyse the posterior with direct methods
due to reasons of complexity and to an intractable normalisation constant. We can however make use
of Markov chain Monte Carlo methods to analyse our model, and this will be further discussed in the
next section leaving details for the Appendix.

3 INFERENCE

In this section we will discuss how we can do inference from the model making use of Markov chain
Monte Carlo methods from the posterior density, for fixed val ues of the 7, v and e parameters. We will
then discuss how we choose the constants ¢(*) and ¢(#), and how we estimate 7, y and ¢ to maximise
the predictive ability of the model.

3.1 THEMCMC ALGORITHM

We can do inference from the posterior density proportional to (6) using (dependent) samples from the
posterior produced by Markov chain Monte Carlo methods. There is now an extensive literature on
MCMC methods and Gilks et al. (1996) provides a comprehensive overview of theory and the wide
range of applications. In brief, in order to generate realisations from some density f(dz) we construct
a Markov chain using an irreducible aperiodic transition kernel which has f(dz) as its equilibrium
distribution. The algorithm goes as follows; Suppose the current state of the Markov chainiis z, and
we propose amove of type j that moves z to dz' with probability ¢;(z, dz'). Themoveto 2z’ isaccepted
with probability min{1, R, .-}, where

fdz") (', dz)
fdz) q;(z, dz')

otherwise we stay in the original state z. When ¢; is symmetric, (7) reducesto f(dz')/f(dz) and the
sampler isknown asthe Metropolis algorithm. The perhaps most well known construction isthe Gibbs
sampler; Take g; to be the conditional density of the component(s) to be updated given the remaining
components. Because R, .- isonein this case we always accept the new state.

()

Rz,z’ -

We need in theory two different move types to implement aMCMC agorithm for our model; Update
the result for those matches which are not played, update the attack and defence strength for each team
a each time amatch is played. However, to ease the implementation of the MCMC agorithm we do
areformulation of mixture model and attach an independent Bernoulli variable to each match. Each



Bernoulli variable is updated during the MCM C agorithm and indicate which one of the distributions
ontheright hand side of Eq. (3) wecurrently use. Werefer to the Appendix for the details of theMCMC
algorithm and a discussion of some implementation issues.

The average acceptance rate for the proposed MCMC algorithm, is around 55%. Even if our single
site updating algorithm is not that specialised, we obtain quite reasonable computationa costs. The
algorithm does 1 000 updates of al variablesin a case with 380 matches, in about 40 seconds on a Sun
SparcStation 10 with a 100MHz hyperSPARC CPU-unit.

3.2 INFERENCE FOR c¢®), ¢®) | 7, v AND €

In this section we will discuss how we choose various constants, validate our Gaussian prior distribu-
tion for the properties, and how we estimate the important parameters r, v and e using historical data
from the Premier League and Division 1.

We used 1684 matches from Premier League 1993-97 and 2208 matches from Division 1 1993-97 to
estimate two sets of global constants ¢(*) and ¢(*). We used for simplicity thelogarithm of the empirical
mean of the home and away goals. The estimates are ¢(*) = 0.395, ¢(¥) = 0.098 for Premier League,
and ¢(®) = 0.425, ¢ = 0.062 for Division 1. These values are close to those we obtained with a
more accurate and comprehensive Bayesian analysis.

It istempting to use Gaussian priors for the properties of each team. To validate this assumption, we
used 924 matches from the Premier League assuming each of the 924 match-results were realisations
from matches with a common distribution for log A(*) and log A(%). The posterior density of log A(*)
and log A\(%) were close to Gaussians, so our assumption seems reasonable. We therefore took the prior
for o and d for all teams to be (independent) Gaussians with an average variance 1/37 found from
the estimates. Note that this implies a common loss of memory rate for all teams (Section 2.3). Al-
though we expect the attack and defence strength to be (positively) dependent, we choose prior inde-
pendence for smplicity and to be non-informative. Further, the prior variance is confounded with the
T-parameter for all matches apart from the first in each league (see Eq. (5)).

The conditional mean and variance for the goal log-intensity are controlled by the parameters — and +y,
and the goal model depends on the mixture parameter . The predictive properties of the model depend
on these parameters. It is tempting from the Gaussian structure in the time model to make use of the
conjugate Gammadensity for theinverse variances (precisions); If the prior for + isgammadistributed
so is the posterior. Our experience with this approach tells that there is not much information in the
match results about the loss of memory rate 7, although the parameter isimportant for the predictive
abilities for the model. We chose therefore 7, v and € to optimise the predictive ability of the model
on historical data. We ran our model on the second half of the four seasons from 1993-97 both for
Premier League and Division 1, and predicted successive each round the second half of each season.
(We need to use thefirst half of each season to learn about the different teams.) To quantify the quality
of the predictions, we computed the geometrical average of the probabilities for the observed results



for each match played so far. Thishas aflavour of being anormalised pseudo likelihood measure as it
is aproduct of conditiona probabilities. We denote this measure by PL. We repeated this procedure
for various vaues of 7, v and ¢ on athree-dimensiona grid. (This was a computational expensive
procedurel) To our surprise, there seems to be a common set of values for the parameters that gave
overall reasonable results for both leagues and for all seasons. These valueswere + = 100[days], v =
0.1ande = 0.2. (Thevaueof 7 = 100 correspondsto prior variance of o = 1/37, sothe“optimal” 7
depends on the prior variance through o2 /7 = 1/3700.) Although we found parameter values giving
higher PL for each of the seasons and leagues, we chose to use the common set of parameter values as
these simplify both the interpretation of the model and its use.

4 APPLICATIONS AND RESULTS

This section contains applications of the proposed model for the Premier League and Division 1 for
1997-98, in prediction, betting and retrospective analysis of the season.

For simplicity we selected values uniformly spaced in the interval —0.2 to 0.2 as the prior means for
the attack and defence strength in the Premier League, based on our prior ranking of theteams. A sim-
ilar procedure was chosen for Division 1. Another approach is to use the mean properties (possible
adjusted) from the end of last season, at least for those teams that stays in the same league. Asthe
prior mean is only present in the first match for each team, al reasonable prior mean values give ap-
proximately the same predictions for the second half of the season. The prior mean values are most
important for predicting the first rounds of each season. We further used the parameter values sug-
gested in Section 3.2. In the forthcoming experiments, the number of iterations was checked to give
reliable results. We used 100 000 iterations in the prediction application, and 1 000 000 iterations in
the retrospective analysis.

4.1 PREDICTION AND BETTING

To compare our predictions and to simulate the betting experiments, we used the odds provided by one
of the largest international bookmakers operating on the web, Intertops. Although thefirmisofficialy
located in Antiguain West Indies, it is easily accessible from anywhere in the world via Internet at the
URL http://ww. I ntertops. com From their odds for the Premier League and Division 1, we
computed the corresponding (predictive) probabilities for home/draw/away.

4.1.1 PREDICTIONS

Figure 3 showsthe PL asafunction of timefor the second half of the 1997-98 season in Premier League
and Division 1, using the first half of each season to learn about the different teams. Both leagues are
nearly equally predictable from the bookmaker point of view, with afinal PL-values of .353 and .357



for Premier League and Division 1, respectively. Our model does surprisingly well compared to the
bookmaker with afinal PL-values of .357 and .372 for Premier League and Division 1, respectively.
The prediction are especially good for Division 1. Recall that the model only make use of the match
results and not all other information which is available to those who set the bookmaker odds. 1t seems
like bookmakers provide better odds for Premier L eague than for the lower divisions, which might be
natural as the magjority of the players bet on the Premier League.

4.2 SINGLE BETS

We can smulate a betting experiment against I ntertops using the above predictions. Assume B isthe
set of matches we can bet on. Which matches should we bet on and how much? This depends on our
utility for betting, but aswe decide oursdlf which matchesto bet on, we have afavourable gameto play
as the posterior expected profit is positive. The statement is conditional on a*“correct” model, and a
betting experiment will therefore validate our model. For favourable games, Epstein (1995) suggests
to bet on outcomes with a positive expected profit but place the bets so we obtain alow variance of
the profit. This strategy will additional to a positive expected profit, also make the probability of ruin,
which is an absorbing state, small. We chose therefore to place the bets to maximise the expected
profit while we keep the variance of the profit lower than some limit. An equivalent formulation isto
maximise the expected profit minus the variance of the profit, which determine how we should place
our bets up to amultiplicative constant. This constant can be found if we choose a specific value or an
upper limit for the variance of the profit. Let 11/ and o/ be the expected profit and variance for betting
aunit amount on outcome 4 in match j, where i € {home, draw, away}. These values are found from
the probability p! and odds o/ for outcome i in match ;. Let 3/ bethe corresponding bet, where we for
simplicity restrict ourselves to place no more than one bet for each match. The optimal bets are found
as

argmax U({5}), where U({g]}) = E(profit) - Var(profit) = >_ 4/ (1] -~ Bo77) .
BI>0 jeB

Thesolutionis 3/ = max{0, 1 /(20;*")}, where additionally we choose the outcome i with maximal
5{ Mf for match j to meet the “not more than one bet for each match” requirement. Figure 4 showsthe
profit (scaled to have ) i 5{ = 1 for al bets made so far) using the predictions and odds in Figure 2,
together with an approximate 95% interval given as posterior mean+2 posterior standard deviation.
Theresults are within the upper and lower bound, although the lower bound at the end of the season is
negative indicating still arisk for loosing money. For Premier League the final profit was 39.6% after
wewon on 15 of atotal of 48 betson 17 home-wins, 5 draw and 26 away-wins. For Division 1 thefinal
profit was 54.0% after wewon on 27 of atotal of 64 bets on 30 home-wins, 6 draw and 28 away-wins.
The final bounds were (—47.2%, 87.8%) and (—29.5%, 58.0%) for Premier League and Division 1,
respectively. The ﬁf’svaried from 0.001 to 0.211 with an average of 0.047 for Division 1.

It is not enough to predict the match result just dightly better than the bookmaker to earn money when
we bet on single matches. The bookmaker take some percentage of the bets as tax by reducing their
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0dds to less than one over their probability for home-win, draw and away-win, and the odds from In-
tertops satisfty 1/0f e + 1/0ay + 1/ 0hway = 1.2.

The high profit in end January for the Premier League, is due to a single match, Manchester United
versus Leicester City at January 31. Intertops gave high odds for an away-win, 13.8, while our model
predicted 0.184 chance for an away-win. AsLeicester Cwon 0— 1, thisbet gave an significant pay-off.

4.2.1 ComMmBO BETS

TheIntertops al so provide the opertunity for “ combo” -bets; Bet on the correct results for more than one
match simultaneously. We have investigated the profit if we chose this option where we (for smplic-
ity) place our bets on the correct results of three matches simultaneously. The probability for getting
three matches correct is p{ p{,' p{,',' (approximately only, as the teams properties are dependent), and this

-1

event has odds o] o/, o/, . How should we now place our bets 577 2 The same argument as for sin-
gle bets applies, place the bets to maximise the expected profit minus the variance. Although the idea
is similar, we have now dependency between the various bets as some matches can be in more than
one combination of three matches. Let 3 be the vector of bets, u and 3 be the vector of expected
values and covariance matrix for all the available combos with a unit bet. We should place our bets

proportional to
T AT
argrélgg B'u—pB"X3. (8)

Thisis a standard quadratic linear programming problem which is easily solved trough well known
algorithms, although the covariance matrix X is somewhat tedious to calculate. We choose our candi-
dates only among those outcomes which we bet on in the single case to obtain a reasonable dimension
of the problem in (8). The simulated combo-betting experiment gave less satisfying results. Thefinal
profit were —100% (140.2%) after 35 bets and 80.3% (109.7%) after 63 bets for the Premier League
and Division 1, with the posterior standard deviation given in the parentheses. If we merge the two
divisions together, the profit were 9.7% with alarge variance compared to the variance obtained using
single bets. It seemsto be both easier and more reliable to bet on single matches compared to combo-
bets.

4.3 RETROSPECTIVE ANALYSIS OF PREMIER LEAGUE 1997-98

According to the model assumptions the match resultsin Premier League 1997-98 updates information
about defending and attacking strength for all teams throughout the season. Given thisinformation, it
isinteresting to know whether Arsenal was lucky to win the Premier League 1997-98. Similar ques-
tions arise for other teams; Was Everton lucky to stay in the league? Did Aston Villadeserve their 7th
place? It is easy to provide the answer from the model for such questions using the power of MCMC
by playing anew match for each of the 380 matches using samplesfrom thejoint posterior densities for
al properties and at all times. By collecting the points and goals made we can compute a conditional
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sample of the final ranking. We repeat this procedure after each iteration in the MCMC, and compute
from all samplesin the end the estimates we are interested in. (In this analysis we increased the prior
variance for all properties by afactor of 10, and similar with 7 to keep the conditiona variance in (5)
unchanged. These near non-informative priors makes more sense in aretrospective analysis.)

Table 1 showsthe estimated (posterior) probabilities for Arsenal, Manchester U, Liverpool and Chelsea
to be the first, second and third in the final ranking. The table shows also the observed rank and the
number of points achieved. Manchester U had probability .433 of winning the League while Arsena
had .247. Liverpool and Chelsea have similar probabilities for being first, second and third. It seems
like Arsenal was lucky to win the title from Manchester U.

Figure 5 gives a more complete picture of the final ranking and displays the expected final rank for
each team with approximate 90% (marginal) credibility intervals. The solid line shows the observed
ranking. We see from the graph that Everton would have been unlucky to be relegated, and Aston Villa
did it better than expected. The uncertainty in the fina ranking is surprisingly large, and the observed
rank seemsto be well within the uncertainty bounds. Aston Villa, for example, could easily have been
15th instead of 7th. The managers surely have to face alot of uncertainty. It isinteresting to note from
the graph that the 20 teams divide themselvesinto four groups: Thetop four, upper middle seven, lower
middle seven, and the bottom two.

To study more how the top four teams differ and how their skill s varied though the season, we compute
the (posterior) expected value of the offensive and defensive strength as a function of time. Figure 6
showsthe result. The difference in defensive skills of the four teams are prominent, while their offen-
sive skills are more similar. Manchester U had a good and stable defence while their attack strength
decreased somewhat in the second half of the season. Denis Irwin was badly injured in December, and
might be one reason. Later in the season both Ryan Giggs and Nicky Butt suffered from injuries and
suspension causing attacking strength to decrease. The defensive skills of Arsenal improved during
the season while their offensive skills were best at the beginning and end of the season. Manchester U
defensive skills are superior to Arsenal’s during the hol e season, while Manchester U’s offensive skills
are somewhat better in the period of October to March. Intotal, Manchester U seemsto bethe strongest
team. Liverpool and Chelseahave similar and stable defensive qualities, whilethere offensiveismono-
tone increasing for Liverpool and monotone decreasing for Chelsea. Arsenal is clearly ranked ahead
of Liverpool and Chelsea mainly due to their strong defence. Liverpool isranked ahead of Chelseaas
they had both dightly better defence and attack properties on average. However, thisis not a sufficient
condition in general; Also which teams they meet at which time isimportant.

An amusing application of the model appearsif wetreat the parameter e in Eq. (3) asaspecific random
variabl e specific for each match, €tA,B, say. Weassign prior probability 0.2 for thisvariabletobe 1. This
induces asmall change in the MCM C agorithm in the update of €tA,B (refer to the Appendix). Werun
this modified model on the Premier League and ranked each match after the posterior probability for
€'y _p tobel. Thisprobability hastheinterpretation asthe probability for that match to be unexplainable
or an outlier, and hence gives away of locating those matches that were most surprising taking both the
observed past and future into account. Table 2 list the five most surprising results in Premier League
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1997-98. The match between Liverpool and Barndey November 22 where Barndey won 0 — 1, isa
clear winner of being the surprise match of the season.

5 DISCUSSION AND FURTHER WORK

The presented model seems to grab most of the information contained in the match result and provide
reasonable predictions. The seemingly stability for the v, 7 and e parameter across seasons, is one
confirmation. Although the number of variables are more than the number of data, we are not in the
Situation of over-fitting the data. We take the (posterior) dependency between the attack and defence
strength at different time points as various ways to explain the data.

Further, the presented approach seems superior to the earli er attempts to model soccer games asit 7)
allowsfor coherent inference of the properties between the teamsalso intime, 7i) easily account for the
joint uncertainty in the variables which isimportant in prediction (Draper, 1995), ii) alowsfor doing
various interesting retrospective analysis of a season, and finally iv) provides aframework whereisit
easy to change parts or parametrisation in the model. We do not claim that our parametrisation, goal
and time model is optimal and cannot be improved on, but that the presented Bayesian approach with
MCMC based inference seems promising for these kinds of problems.

There are severa points which could and should be improved in the model.

DATA Itisof magjor importance to include more data than just the final match-result into to the model,
but this depends on what kind of data are (easily) available and useful. No attempts are done
along these lines as far as we are aware of. Thiswill imply a change of the model as well, but
the basic ideas and framework will remain.

TIME MODEL Brownian motion is ato simple time-model for the team’s properties and does not in-
clude thefirst derivative (local trend) inthe predictions. A non-stationary time-model is needed
to capture the local behaviour needed for prediction in the near feature. An integrated autore-
gressive process might be suitable if we discretize the time which is quite reasonable. A such
choice reguire (among others) changesin movetype 1 in MCMC agorithm described in the Ap-
pendix.

PARAMETER ESTIMATION Weassumed that all teams have acommon loss-of-memory rate + and this
isasmplification. We have not succeeded estimating a team-specific , or found a good way
to group each team into a “high/normal/low” loss of memory rate. More observation data than
just the final match-result is most likely needed to make progress in this direction.

GoaL MODEL Thegoa model could beimproved on. The birth-process approach of Dixon and Robin-
son (1998) is natural and interesting, although one should estimate the goal model simultane-
ously with the time varying properties, coherently. Further, various parametrisations like the
inclusion of the psychological effect and the idea of a mixture model, needs to be investiaged
further within their birth-process framework.
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HOME FIELD ADVANTAGE Each teams (constant) home field advantage is a natural variable to in-
clude in the model. We did not find sufficient support from the match results to include this at
the current stage, but hopefully more datawill change this.

It seems like the statistical community are making progress in understanding the art predicting soc-
cer matches, which is of vital importance for two reasons. i) demonstrate the usefulness of statistical
modelling and thinking on a problem that most people really care about, and ii) make us al rich on
betting!
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FIGURE 1. Histogram of the number of home and away goals in 924 matches in the Premier League
1993-95.

P(1st) | P(2nd) | P(3rd) | Rank | Pts
Arsenal .247 230 .161 1 78
Manchester U | .433 230 131 2 7
Liverpool .110 151 .153 3 65
Chelsea .095 134 142 4 63

TABLE 1: The estimated posterior probabilities for each team being the first, second and third in the
final ranking in Premier League 1997-98, together with the observed rank and the number of points
achieved.

Match Date prob(outlier) | Result
Liverpool — Barndey Nov 22 1997 .76 0-1
Newcastle — Leicester C Nov 1 1997 .66 3-3
Wimbledon - Tottenham May 2 1998 .61 2—-6
SheffieldW — Manchester U | Mar 7 1998 .60 2-0
SheffildW - Arsena Nov 22 1997 .59 2-0

TABLE 2: Thefive most surprising resultsin Premier League 1997-98, ranked according to the poste-
rior probability for being unexplainable or an outlier.
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Premier League 1997-98
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FIGURE 3: Thefigures display the PL measure for the predictions made by the model and odds from
Intertops in Premier League and Division 1.
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Premier League 1997-98
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FIGURE 4: The observed profit in the simulated betting experiments for the 1997-98 season in Premier
League and Division 1 using the predictions in Figure 3. The bets are on single matches against the
odds provided from Intertops.
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Premier League 1997-98

Expected and final ranking with marginal approximate 90% credibility bounds

Ranking

FIGURE 5: Thefigure show the (posterior) expected final rank (dots) for each team with approximate
90% marginal credibility bounds, together with the observed ranking (solid line). Note the large un-

certainty in the fina ranking.
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Premier League 1997-98
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FIGURE 6: The retrospective estimates of the mean offensive and defensive strength for the four best
teams during the season.
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APPENDIX DETAILS OF THE MCMC ALGORITHM

This appendix contains details of our MCMC implementation sketched in Section 3.1. To ease the
implementation of the mixture model in Eq. (6), we will use an equivalent reformulation; Definees
as an independent Bernoulli variable which is 1 with probability ¢, and define

* (=) () i
. T T , A ,>\ if € =0
g2 (fI/'A,B,yA,B | )\&\’)B,A%’)B,EA,B> — { 91 ( A,B:YAB | AB( )A B) " . A,B
o1 (248,945 | exp(c™),exp(c¥))) ifean = 1.

9)
Then with obvious notation

Ty (xA,BayA,B | AEXZ)BvAS},)B) =Eeap [%2 (»"EA,B,yA,B | >‘54$,)B7>‘E§I,)B’€A:B)i| :

Thus, wecan attach one Bernoulli variablesto each match and update also these variablesinthe MCMC
algorithm. Weignore their values in the output analysis where we consider only those components of
0 that is of our interest. Thisyields a correct procedure as the marginal distribution for 8 remains un-
changed when we include the Bernoulli variables.

Dueto the reformulation of the mixture distribution, we need three different move types to implement
aMCMC algorithm for our model; 1) Update the properties for each team every time thereisamatch,
2) update the match result for each unobserved match, and 3) update the Bernoulli variable for each
match. In each full sweep we visit all unobserved (stochastic) variables in arandom order and update
each one using the appropriate move type.

MoVE TYPE 1. UPDATING ONE OF THE PROPERTIES We describe only how we update the attack
strength !, for team A at time # using a Metropolis step, as the update of the defence strength is
similar. Notethat all other variables remain constant when we propose an update for a';;’. We assume
team A play amatch against team B at timet” and at A’shome-ground, asthe acceptance rate when A
plays on B’shome-ground is similar with obvious changes. Let ¢’ and ¢’ be the times of the previous
and following match for team A. We will soon return to the case when there is no previous and/or
following match. Denote by (=) 4.4/ ;) and €', ; the (current, if not observed) number of goalsin
the match and the Bernoulli variable attached to that match, respectively.

Wesamplefl rst anew proposal for a’ A ' from aGaussian (symmetric) distribution, at N N(a';;', 3)
where oq isafixed constant for al teams, attack and defence. For all our examples in Section 4, we
used o2 = 0.052. The new proposal is accepted with probability min{1, R}, where

& ! " " ! " )t new | (y),t" ,new t”
m(a’y ™ | aty) w(at)’ | o’ ") o2 ('I"A B YaB | >‘A B AAB €A,B

" ! 11 "
’/T(ai‘ | (qu) 71'((1,%4 ‘ (1'34) Tg2 (‘TA,B’ A ‘ >‘A B 7>‘S4)B ’7651,,B)

7

R =

(10)

fnGN|

otherwise We remaln |n the old state. In Eq. (10), 7 (a ') denote the conditional Gaussian
t',new

density for o, given o', evaluated at o', ™. Further is A(A )B computed from Eq. (1) using the
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fne/v " ,new

proposed new value o, " and so on. If there is no previous match, then «(a’, ™ | a’,) and 7 (a",

tnew

aA) is replaced with the prior density for a4 evaluated at a, and aA , respectively. If thereisno
following match, then we remove (a; | a’,"™) and 7r(atm | a%,) in the expression for R.

We prefer this simple Metropolis step compared to the more el egant proposal density found from com-
puting the Gaussian approximation to the conditional density, by a second order Taylor expansion of
the log conditional density around current values. Although the acceptance rate with atailored Gaus-
sian proposal increase to well over 90%, it does not seems to be worth the additional computation and
implementation costs.

MOVE TYPE 2. UPDATING A MATCH RESULT We update the match result using a Gibbs-step, thus
drawing (=, 5,4 ) from the conditional distribution in Eq. (9). The modifications needed due to

truncation and /i(xA B y"" | A(j”)ét”, A(j”)g”), are easily done by rejection steps. The algorithm is as
follows.

L If €} 5is1, then set

otherwise set

2. Draw z from Po(z | A(®)) until - < 5, and then draw y from Po(y | A®)) until y < 5.
3. With probability

max{1.1,1 + 0.1)\(55))\(1/)}

set 2y ; = x and y'| ; = y and return, otherwise go back to 2.

MOVE TYPE 3. UPDATING A BERNOULLI VARIABLE We update the Bernoulli variable attached
to each match, €'} ;, say, by using a Gibbs step. We set ¢} ;; to 1 with probability ¢, and to 0 with
probability 1 — .

MOVE TYPE 3'. UPDATING A BERNOULLI VARIABLE WHILE COMPUTING TABLE 2 Inthiscase,
the Bernoulli variable attached to each match, ¢!, isarandom variable with prior probability  to be
1. Thus the update rule will differ from move type 3. We propose aways to flip the current value of

€y pto e’ B =1 — ¢!} ,; which is accepted with probability min{1, R},

"’ (z)t" (y),t" ",new ' ,new f” ,new
Tg2 (""A B Yap | A4 AAB €aB ceap t(1—e)(l—€yp)
R pu—

# # t” (y),t” # €€t” + 1 — 1 — Et”
ng(gcAB,yABH\AB ,AA’B €A B A,B ( €)( A,B)
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A COMMENT ON IMPLEMENTATION Themodel is easiest programmed as a graph-model (see Fig-
ure 2) parsing matches with teams, dates, etc. from external input files. The described MCMC algo-
rithm can be modified in several ways to achieve significant speedup. Our approach was to tabulate
the truncated Poisson distribution for alarge set of \’s, and then use atable lookup with interpolation
to obtain values. The normalisation constants for the joint density ﬁ;fl(mA’B, YAB | ,\%)B, ,\(j/,),?) is

also needed as afunction of (A&Z’V)B, A%,)B)' which we once more tabulate. It is probably most efficient

to tabulate (7= A.BsYAB | Af")B, A%’)B) directly. This approach require more memory, and prohibit
the analysis of the most surprising matches presented in Table 2. On the other hand, it does not require
the above reformulation of the mixture distribution.

A COMMENT ON RAO-BLACKWELLISATION To predict afuture match, A against B say, it is nat-
ural to consider the simulated result (z4 p.y4,) Of that match and estimate the probability for A
win against B by counting how many times z 4 g is grater than y 4,z and divide by the total num-
ber. However, we can decrease the variance of this estimator by Rao-Blackwellisation; We compute
Pr(Awinsover B | ey, ep) and use the empirical mean of this conditional probability as our esti-
mate for the probability that A win against B. (Again, we tabulate these probabilities and use table
lookup with interpolation.) We refer to Liu, Wong and Kong (1994) for a theoretical background of
Rao-Blackwellisation in this context.
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