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ABSTRACT

A common discussion subject for the male part of the population in particular, is the prediction
of next weekend’s soccer matches, especially for the local team. Knowledge of offensive and de-
fensive skills is valuable in the decision process before making a bet at a bookmaker. In this article
we take an applied statistician’s approach to the problem, suggesting a Bayesian dynamic gener-
alised linear model to estimate the time dependent skills of all teams in a league, and to predict next
weekend’s soccer matches. The problem is more intricate than it may appear at first glance, as we
need to estimate the skills of all teams simultaneously as they are dependent. It is now possible
to deal with such inference problems using the iterative simulation technique known as Markov
Chain Monte Carlo. We will show various applications of the proposed model based on the En-
glish Premier League and Division 1 1997-98; Prediction with application to betting, retrospective
analysis of the final ranking, detection of surprising matches and how each team’s properties vary
during the season.

KEYWORDS: Dynamic Models; Generalised Linear Models; Graphical Models; Markov Chain Monte

Carlo Methods; Prediction of Soccer Matches.

1 INTRODUCTION

Soccer is a popular sport all over the world, and in Europe and South America it is the dominant spec-

tator sport. People find interest in soccer for various reasons and at different levels, with a clear dom-

inance for the male part of the population. Soccer is a excellent game for different forms of betting.

The outcome of a soccer match depends on many factors, among these are home–field/away–field, the�ADDRESS FOR CORRESPONDENCE: Department of Mathematical Sciences, Norwegian University of Science and

Technology, N-7034 Trondheim, Norway.
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effect of injured players and various psychological effects. Good knowledge about these factors only

determine the final result up to a significant, but not too dominant, random component.

Different models for prediction of soccer matches for betting have existed for a long time. A quick

tour around the Web, perhaps starting at http://dmiwww.cs.tut.fi/riku, shows an impressive

activity with links to small companies selling ready-to-go PC programs for prediction and betting, dis-

cussion groups and bookmakers who operate on the Web. The most popular ideas in the prediction

programs are to consider win, draw and loss sequences, goals scored over five matches, and the points

difference in the current ranking. Most of the programs have a Bayesian flavour and allow the user to

include his/her expert knowledge in various ways. The (pure) statistical side of soccer is not so devel-

oped and widespread. Ridder, Cramer and Hopstaken (1994) analyse the effect of a red card in a match,

Kuonen (1996) model knock-out tournaments, and Lee (1997) provides a simplified generalised linear

model with application to final rank analysis and Dixon and Coles (1997) and Dixon and Robinson

(1998) provide a more comprehensive model.

In this article, we model the results of soccer matches played in a league, where the teams play against

all each other twice (home and away) relatively regularly and during a limited time period. We will use

the history of the played matches to estimate what we think are the two most important (time depen-

dent) explanatory variables in a Bayesian dynamic generalised linear model; the attack and defence

strength. It is more intricate than one might think to estimate the properties like attack and defence

strength for each team. Assume team A and B play against each other with the result 5� 0. One inter-

pretation of this result is that A has a large attack strength, another that B has a low defence strength.

The properties for A and B conditional on the result are therefore dependent. As each team play against

all the other teams in a league, we soon reach full dependency between the (time dependent) proper-

ties for all teams. We can analyse such problems using Markov chain Monte Carlo (MCMC) tech-

niques (Gilks, Richardson and Spiegelhalter, 1996) to generate dependent samples from the posterior

density. The proposed model and the power of MCMC can be used to make predictions for the next

round in the league and answer other interesting questions as well, like; What is the expected ranking

at the end of the season? Was Arsenal lucky to win the Premier League 1997-98?

A simplified and stripped off version of our model is similar to the generalised linear model developed

independently by Lee (1997). Dixon and Coles (1997) and Dixon and Robinson (1998) presented a

more comprehensive model than Lee (1997), trying to mimic time-varying properties by down-weighting

the likelihood. They where not able to provide a coherent model for how the properties develop in time.

In this paper we provide a Bayesian model which model the time-variation of all properties simultane-

ously, present a new parametrisation and ideas in goal-modelling, and show how we can do inference

and do retrospective analysis of a season using the power of MCMC. We need a joint model for the

properties in time to do retrospective analysis of a season, to be able to estimate each teams proper-

ties at time t using data from matches both before and after time t. Our approach provides a coherent

model which is easy to extend to account for further refinement and development in the art of prediction

soccer matches. Other similar sports problems could be approached in the same manner.

The rest of the article is organised as follows. We start in Section 2 with the basic explanatory vari-
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ables and derive the model step by step. Section 3 describes how we estimate global parameters using

historical data and do inference from the model using MCMC techniques. In Section 4 we apply our

model analysing the English Premier League and Division 1 1997-98, with focus on prediction with

application to betting, retrospective analysis of the final ranking, locating surprising matches and study

how each teams properties vary during the season.

2 THE MODEL

In this section we derive our model for analysing soccer matches in a league. We start with the ba-

sic explanatory variables, continue by linking these variables up with a goal model and model their

dependency in time. In Section 2.4 we collect all pieces in the full model.

2.1 BASIC EXPLANATORY VARIABLES

There are a variety of explanatory variables that will influence the result of a forthcoming soccer match.

Which factors we should include in the model depends on what kind of data that is available. To keep

the problem simple, we will only make use of the result in a match, like home team wins 3 � 1 over

the away team. We therefore ignore all other interesting data like the number of near goals, corners,

free kicks and so on. Our next step is to specify which (hidden) explanatory variables attached to each

team that will influence on the match result.

The two important properties of each team are their defending and attacking skills. Defence and attack

strength is represented as the random variables d and a respectively. A high value of d and a means a

good defence and attack respectively. Let eA = (a; d)A denote the properties for team A, and further

let �a;A and �2a;A be the prior mean and variance for aA, and similar for the defence strength and the

other teams.

2.2 THE GOAL MODEL

The next step is to specify how the result (xA;B ; yA;B) depends on the properties of home team A and

away team B. A reasonable assumption, is that the number of goals A makes (xA;B) depends on A’s

attack strength and B’s defence strength. Similarly, the number of goals B makes (yA;B) depends on

B’s attack strength and A’s defence strength. Additionally, we include a psychological effect; Team A

will tend to underestimate the strength of team B if A is a stronger team than B. Let �AB = (aA +dA � aB � dB)=2 measure the difference in strength between A and B. We assume further thatxA;B j(eA;eB) d= xA;B j aA � dB � 
�AByA;B j(eA;eB) d= yA;B j aB � dA + 
�AB ;
3



where 
 is a small constant giving the magnitude of the psychological effect. We assume the strength

of team A and B are not that different since we analyse teams in the same league, so it reasonable to

expect 
 > 0. (The opposite effect (
 < 0) might occur if team A is so superior compared to team B

that they develop an inferiority complex facing A, which do not expect will happen in the same league.)

To motivate our probability law for xA;B and yA;B , we display in Figure 1 the histogram of the result

in 924 matches in the Premier league 1993-95. The histogram and nature of the game itself suggest to

a first approximation a Poisson law for xA;B and yA;B . Thus, as a first approximation we may assume

the number of goals conditioned on the teams’ properties to be Poisson distributed with mean �(x)A;B
and �(y)A;B , wherelog �(x)A;B = c(x) + aA � dB � 
�AB ; and log �(y)A;B = c(y) + aB � dA + 
�AB : (1)

Here, c(x) and c(y) are global constants describing (roughly) the average number of home and away

goals.

Although independence of xA;B and yA;B is verified empirically to be quite reasonable (Lee, 1997), it

does not imply that xA;B and yA;B are independent conditional on (eA;eB). Dixon and Coles (1997)

proposed therefore to use the joint conditional law for (xA;B; yA;B)�g1 �xA;B; yA;B j �(x)A;B; �(y)A;B� = ��xA;B; yA;B j �(x)A;B; �(y)A;B�� Po
�xA;B j �(x)A;B� Po

�yA;B j �(y)A;B� (2)

where Po
�xA;B j �(x)A;B� is the Poisson law for xA;B with mean �(x)A;B , and � is a correction factor given

as ��xA;B; yA;B j �(x)A;B; �(y)A;B� = 8>>>>>><>>>>>>: 1 + 0:1�(x)A;B�(y)A;B if xA;B = yA;B = 0;1� 0:1�(x)A;B if xA;B = 0; yA;B = 1;1� 0:1�(y)A;B if xA;B = 1; yA;B = 0;1:1 if xA;B = yA;B = 1;1 otherwise.

The correction factor � increase the probability of 0� 0 and 1� 1 at the cost of 1� 0 and 0� 1. All

other joint probabilities remain unchanged. Note further that the (conditional) marginal laws of xA;B
and yA;B from Eq. (2) equals Po

�xA;B j �(x)A;B� and Po
�yA;B j �(y)A;B�, respectively.

We found it necessary to modify Eq. (2) in two ways; The first modification is about the Poisson as-

sumption, the second is a robustness adjustment.

Although the Poisson model seems reasonable, it may not be the case if one of the teams make many

goals. This is highly demotivating for the other team, and in most cases imply a contradiction with

our underlying model assumption that the goal intensity does not depend on the goals made during the

match. We correct for this by truncating the Poisson law Po
�xA;B j �(x)A;B� (and similar with yA;B)

in Eq. (2) after 5 goals. Denote by ��g1 the resulting truncated law. The result of 7 � 0 and 6� 5 will
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be interpreted as 5 � 0 and 5 � 5, respectively. The goals each team make after their first five are

uninformative for the two team’s properties.

It is our experience that the match result is less informative for the properties of the teams than Eq. (1)

and ��g1 suggest. We found it necessary to use a more model-robust goal model by forming a mixture

of laws, �g �xA;B; yA;B j �(x)A;B; �(y)A;B� = (1� �)��g1 �xA;B ; yA;B j �(x)A;B ; �(y)A;B�+ � ��g1 �xA;B ; yA;B j exp(c(x)); exp(c(y))� : (3)

Here, � is a parameter with the interpretation that only (1 � �) � 100% of the “information” in the

match result is informative concerning eA and eB , and the remaining � � 100% is not informative.

The non-informative part of �g use the average goal intensities, exp(c(x)) and exp(c(y)), and �g shrinks

therefore ��g1 towards the law for an average match. The value of � is in Section 3.2 found to be around0:2.

2.3 TIME MODEL

It is both natural and necessary to allow the attack and defence variables to vary with time. For the

discussion here, assume that t0 and t00 � t0 are two following time points (number of days from a com-

mon reference point) where team A plays a match. Let us consider the attack strength where similar

arguments are valid also for the defence strength. We need to specify how at00A (superscripts t for time)

depends on at0A and possibly on previous values. Our main purpose is to predict matches in the near

future, so only a reasonable local behaviour for aA in time is needed. As a first choice, we borrow

ideas from dynamic models (West and Harrison, 1997), and use Brownian motion to tie together aA at

the two time points t0 and t00, i.e. conditional on fatA; t � t0gat00A d= at0A + �Ba;A(t00=�)�Ba;A(t0=�)� �a;Ap1� 
(1� 
=2) : (4)

(Recall that �2a;A is the prior variance for aA.) Here, fB�;�(t); t � 0g is standard Brownian motion

starting at level zero and where the subscript marks the belonging to the attack strength for team A. The

last factor is a scaling factor we motivate for in the next paragraph. The characteristic time parameter �
is common to all teams and gives the inverse loss of memory rate for atA, Var(at00A �at0A) / �2a;A=� . We

model the attack and defence strength for all teams as in (4) and assume the Brownian motion processes

are independent.

The common parameters 
 and � control the psychological effect and the loss of memory rate. These

parameters have a nice interpretation if we consider the conditional (on the past ft < t00g) expected

value and variance in the Gaussian conditional density for log �(x);t00A;B (and log �(y);t00A;B ). If we assume

for simplicity that �a;A = �d;A = �a;B = �d;B = �0, we obtain

E
�log �(x);t00A;B j past

� = c(x) + at0A � dt0B � 
�t0AB
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and

Var
�log �(x);t00A;B j past

� = 2�20 t00 � t0� : (5)

Thus, 
 adjust the conditional expected value, and � controls the conditional variance of log �(x)A;B .

The scaling with 
 in (4) makes 
 and � orthogonal in this sense. We interpret � and 
 as the main and

secondary parameter of interest, respectively.

2.4 FULL MODEL

We can now build the full model based on the previous assumptions. The properties of each team

obey (4) for the time development and (1) for the result of each match. We only need to keep record of

which teams that play against each other, when and where. Figure 2 shows the situation schematicly

when four teams play 3� 2 matches at time t0, t1 and t2, and the fourth round at time t3 is not played.

(We choose to play the matches at the same days, so the notation is simplified. In practice this is not

the case.) The graph is called the directed acyclic graph (DAG) (Whittaker, 1990) and the directed

edges in the graph show the flow of information or causal relations between parent and child nodes in

the graph. If we construct the corresponding moral graph of Figure 2, we will find a path between each

node in the graph soon after the league starts. We must therefore do inference for all the properties for

each team and time point, simultaneously.

We write � for the all variables in the model and keep for the moment parameters �, 
 and � fixed.

The variables are; The properties et0A , et0B , et0C , et0D at time t0, the result of the match between A and B,C and D at time t0, the properties et1A , et1B , et1C , et1D at time t1, the result of the match between A andC , B and D at time t1, and so on. The joint density for all variables in the model � is easy to find if

we make use of Figure 2. The joint density of � is the product of the conditional density of each node

given its parents. By using �(� j �) as a generic notation for the density of its arguments, and indicate

the time through superscripts, we obtain starting from the top of the graph where each line of Eq. (6)

corresponds to each row of the graph in Figure 2,�(�) = �(et0A ) �(et0B ) �(et0C ) �(et0D)� �(xt0A;B ; yt0A;B j et0A ;et0B ) �(xt0C;D; yt0A;B j et0C ;et0D)� �(et1A j et0A ) �(et1B j et0B ) �(et1C j et0C ) �(et1D j et0D)� �(xt1A;C ; yt1A;C j et1A ;et1C ) �(xt1B;D; yt1B;D j et1B ;et1D)� � � � (6)

Here is �(et0A ) the prior density for eA, which will be commented on in Section 3.2, �(xt0A;B; yt0A;B jet0A ;et0B ) is the mixture law given in Eq. (3) where �(x);t0A;B and �(y);t0A;B are computed from et0A and et0B .

Further is �(et1A j et0A ) equals �(at1A j at0A )�(dt1A j dt0A ) whereat1A j at0A � N

�at0A ; t1 � t0� �2a;A�
6
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and similar with dt1A j dt0A . We denote by N(�; �2) the Gaussian distribution with mean � and variance�2. The rest of the terms in �(�) have similar interpretation, only the teams and times differ.

We have not included the properties inbetween time t0; t1; t2 and t3, as their (conditional) distributions

are known to be Brownian bridges conditional on the properties at time t0; : : : ; t3.

To do inference for the properties of each team conditional on the observed match results, we need the

conditional (posterior) density derived from (6). It is hard to analyse the posterior with direct methods

due to reasons of complexity and to an intractable normalisation constant. We can however make use

of Markov chain Monte Carlo methods to analyse our model, and this will be further discussed in the

next section leaving details for the Appendix.

3 INFERENCE

In this section we will discuss how we can do inference from the model making use of Markov chain

Monte Carlo methods from the posterior density, for fixed values of the � , 
 and � parameters. We will

then discuss how we choose the constants c(x) and c(y), and how we estimate � , 
 and � to maximise

the predictive ability of the model.

3.1 THE MCMC ALGORITHM

We can do inference from the posterior density proportional to (6) using (dependent) samples from the

posterior produced by Markov chain Monte Carlo methods. There is now an extensive literature on

MCMC methods and Gilks et al. (1996) provides a comprehensive overview of theory and the wide

range of applications. In brief, in order to generate realisations from some density f(dz) we construct

a Markov chain using an irreducible aperiodic transition kernel which has f(dz) as its equilibrium

distribution. The algorithm goes as follows; Suppose the current state of the Markov chain is z, and

we propose a move of type j that moves z to dz0 with probability qj(z; dz0). The move to z0 is accepted

with probability minf1; Rz;z0g, whereRz;z0 = f(dz0) qj(z0; dz)f(dz) qj(z; dz0) (7)

otherwise we stay in the original state z. When qj is symmetric, (7) reduces to f(dz0)=f(dz) and the

sampler is known as the Metropolis algorithm. The perhaps most well known construction is the Gibbs

sampler; Take qj to be the conditional density of the component(s) to be updated given the remaining

components. Because Rz;z0 is one in this case we always accept the new state.

We need in theory two different move types to implement a MCMC algorithm for our model; Update

the result for those matches which are not played, update the attack and defence strength for each team

at each time a match is played. However, to ease the implementation of the MCMC algorithm we do

a reformulation of mixture model and attach an independent Bernoulli variable to each match. Each
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Bernoulli variable is updated during the MCMC algorithm and indicate which one of the distributions

on the right hand side of Eq. (3) we currently use. We refer to the Appendix for the details of the MCMC

algorithm and a discussion of some implementation issues.

The average acceptance rate for the proposed MCMC algorithm, is around 55%. Even if our single

site updating algorithm is not that specialised, we obtain quite reasonable computational costs. The

algorithm does 1 000 updates of all variables in a case with 380 matches, in about 40 seconds on a Sun

SparcStation 10 with a 100MHz hyperSPARC CPU-unit.

3.2 INFERENCE FOR c(x), c(y) , � , 
 AND �
In this section we will discuss how we choose various constants, validate our Gaussian prior distribu-

tion for the properties, and how we estimate the important parameters � , 
 and � using historical data

from the Premier League and Division 1.

We used 1684 matches from Premier League 1993-97 and 2208 matches from Division 1 1993-97 to

estimate two sets of global constants c(x) and c(y). We used for simplicity the logarithm of the empirical

mean of the home and away goals. The estimates are c(x) = 0:395, c(y) = 0:098 for Premier League,

and c(x) = 0:425, c(y) = 0:062 for Division 1. These values are close to those we obtained with a

more accurate and comprehensive Bayesian analysis.

It is tempting to use Gaussian priors for the properties of each team. To validate this assumption, we

used 924 matches from the Premier League assuming each of the 924 match-results were realisations

from matches with a common distribution for log �(x) and log �(y). The posterior density of log �(x)
and log �(y) were close to Gaussians, so our assumption seems reasonable. We therefore took the prior

for a and d for all teams to be (independent) Gaussians with an average variance 1=37 found from

the estimates. Note that this implies a common loss of memory rate for all teams (Section 2.3). Al-

though we expect the attack and defence strength to be (positively) dependent, we choose prior inde-

pendence for simplicity and to be non-informative. Further, the prior variance is confounded with the� -parameter for all matches apart from the first in each league (see Eq. (5)).

The conditional mean and variance for the goal log-intensity are controlled by the parameters � and 
,

and the goal model depends on the mixture parameter �. The predictive properties of the model depend

on these parameters. It is tempting from the Gaussian structure in the time model to make use of the

conjugate Gamma density for the inverse variances (precisions); If the prior for � is gamma distributed

so is the posterior. Our experience with this approach tells that there is not much information in the

match results about the loss of memory rate � , although the parameter is important for the predictive

abilities for the model. We chose therefore � , 
 and � to optimise the predictive ability of the model

on historical data. We ran our model on the second half of the four seasons from 1993-97 both for

Premier League and Division 1, and predicted successive each round the second half of each season.

(We need to use the first half of each season to learn about the different teams.) To quantify the quality

of the predictions, we computed the geometrical average of the probabilities for the observed results
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for each match played so far. This has a flavour of being a normalised pseudo likelihood measure as it

is a product of conditional probabilities. We denote this measure by PL. We repeated this procedure

for various values of � , 
 and � on a three-dimensional grid. (This was a computational expensive

procedure!) To our surprise, there seems to be a common set of values for the parameters that gave

overall reasonable results for both leagues and for all seasons. These values were � = 100[days], 
 =0:1 and � = 0:2. (The value of � = 100 corresponds to prior variance of �20 = 1=37, so the “optimal” �
depends on the prior variance through �20=� = 1=3 700.) Although we found parameter values giving

higher PL for each of the seasons and leagues, we chose to use the common set of parameter values as

these simplify both the interpretation of the model and its use.

4 APPLICATIONS AND RESULTS

This section contains applications of the proposed model for the Premier League and Division 1 for

1997-98, in prediction, betting and retrospective analysis of the season.

For simplicity we selected values uniformly spaced in the interval �0:2 to 0:2 as the prior means for

the attack and defence strength in the Premier League, based on our prior ranking of the teams. A sim-

ilar procedure was chosen for Division 1. Another approach is to use the mean properties (possible

adjusted) from the end of last season, at least for those teams that stays in the same league. As the

prior mean is only present in the first match for each team, all reasonable prior mean values give ap-

proximately the same predictions for the second half of the season. The prior mean values are most

important for predicting the first rounds of each season. We further used the parameter values sug-

gested in Section 3.2. In the forthcoming experiments, the number of iterations was checked to give

reliable results. We used 100 000 iterations in the prediction application, and 1 000 000 iterations in

the retrospective analysis.

4.1 PREDICTION AND BETTING

To compare our predictions and to simulate the betting experiments, we used the odds provided by one

of the largest international bookmakers operating on the web, Intertops. Although the firm is officially

located in Antigua in West Indies, it is easily accessible from anywhere in the world via Internet at the

URL http://www.Intertops.com. From their odds for the Premier League and Division 1, we

computed the corresponding (predictive) probabilities for home/draw/away.

4.1.1 PREDICTIONS

Figure 3 shows the PL as a function of time for the second half of the 1997-98 season in Premier League

and Division 1, using the first half of each season to learn about the different teams. Both leagues are

nearly equally predictable from the bookmaker point of view, with a final PL-values of :353 and :357
9



for Premier League and Division 1, respectively. Our model does surprisingly well compared to the

bookmaker with a final PL-values of :357 and :372 for Premier League and Division 1, respectively.

The prediction are especially good for Division 1. Recall that the model only make use of the match

results and not all other information which is available to those who set the bookmaker odds. It seems

like bookmakers provide better odds for Premier League than for the lower divisions, which might be

natural as the majority of the players bet on the Premier League.

4.2 SINGLE BETS

We can simulate a betting experiment against Intertops using the above predictions. Assume B is the

set of matches we can bet on. Which matches should we bet on and how much? This depends on our

utility for betting, but as we decide ourself which matches to bet on, we have a favourable game to play

as the posterior expected profit is positive. The statement is conditional on a “correct” model, and a

betting experiment will therefore validate our model. For favourable games, Epstein (1995) suggests

to bet on outcomes with a positive expected profit but place the bets so we obtain a low variance of

the profit. This strategy will additional to a positive expected profit, also make the probability of ruin,

which is an absorbing state, small. We chose therefore to place the bets to maximise the expected

profit while we keep the variance of the profit lower than some limit. An equivalent formulation is to

maximise the expected profit minus the variance of the profit, which determine how we should place

our bets up to a multiplicative constant. This constant can be found if we choose a specific value or an

upper limit for the variance of the profit. Let �ji and �2;ji be the expected profit and variance for betting

a unit amount on outcome i in match j, where i 2 fhome; draw; awayg. These values are found from

the probability pji and odds oji for outcome i in match j. Let �ji be the corresponding bet, where we for

simplicity restrict ourselves to place no more than one bet for each match. The optimal bets are found

as argmax�ji�0 U(f�ji g); where U(f�ji g) = E(profit)� Var(profit) =Xj2B �ji ��ji � �ji �2;ji � :
The solution is �ji = maxf0; �ji =(2�2;ji )g, where additionally we choose the outcome i with maximal�ji �ji for match j to meet the “not more than one bet for each match” requirement. Figure 4 shows the

profit (scaled to have
Pj �ji = 1 for all bets made so far) using the predictions and odds in Figure 2,

together with an approximate 95% interval given as posterior mean�2 posterior standard deviation.

The results are within the upper and lower bound, although the lower bound at the end of the season is

negative indicating still a risk for loosing money. For Premier League the final profit was 39:6% after

we won on 15 of a total of 48 bets on 17 home-wins, 5 draw and 26 away-wins. For Division 1 the final

profit was 54:0% after we won on 27 of a total of 64 bets on 30 home-wins, 6 draw and 28 away-wins.

The final bounds were (�47:2%; 87:8%) and (�29:5%; 58:0%) for Premier League and Division 1,

respectively. The �ji ’s varied from 0:001 to 0:211 with an average of 0:047 for Division 1.

It is not enough to predict the match result just slightly better than the bookmaker to earn money when

we bet on single matches. The bookmaker take some percentage of the bets as tax by reducing their
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odds to less than one over their probability for home-win, draw and away-win, and the odds from In-

tertops satisfy 1=ojhome + 1=ojdraw + 1=ojaway � 1:2.

The high profit in end January for the Premier League, is due to a single match, Manchester United

versus Leicester City at January 31. Intertops gave high odds for an away-win, 13:8, while our model

predicted 0:184 chance for an away-win. As Leicester C won 0�1, this bet gave an significant pay-off.

4.2.1 COMBO BETS

The Intertops also provide the opertunity for “combo”-bets; Bet on the correct results for more than one

match simultaneously. We have investigated the profit if we chose this option where we (for simplic-

ity) place our bets on the correct results of three matches simultaneously. The probability for getting

three matches correct is pjipj0i0 pj00i00 (approximately only, as the teams properties are dependent), and this

event has odds ojioj0i0 oj00i00 . How should we now place our bets �j;j0;j00i;i0;i00 ? The same argument as for sin-

gle bets applies, place the bets to maximise the expected profit minus the variance. Although the idea

is similar, we have now dependency between the various bets as some matches can be in more than

one combination of three matches. Let � be the vector of bets, � and � be the vector of expected

values and covariance matrix for all the available combos with a unit bet. We should place our bets

proportional to argmax��0 �T�� �T��: (8)

This is a standard quadratic linear programming problem which is easily solved trough well known

algorithms, although the covariance matrix � is somewhat tedious to calculate. We choose our candi-

dates only among those outcomes which we bet on in the single case to obtain a reasonable dimension

of the problem in (8). The simulated combo-betting experiment gave less satisfying results. The final

profit were �100% (140:2%) after 35 bets and 80:3% (109:7%) after 63 bets for the Premier League

and Division 1, with the posterior standard deviation given in the parentheses. If we merge the two

divisions together, the profit were 9:7% with a large variance compared to the variance obtained using

single bets. It seems to be both easier and more reliable to bet on single matches compared to combo-

bets.

4.3 RETROSPECTIVE ANALYSIS OF PREMIER LEAGUE 1997-98

According to the model assumptions the match results in Premier League 1997-98 updates information

about defending and attacking strength for all teams throughout the season. Given this information, it

is interesting to know whether Arsenal was lucky to win the Premier League 1997-98. Similar ques-

tions arise for other teams; Was Everton lucky to stay in the league? Did Aston Villa deserve their 7th

place? It is easy to provide the answer from the model for such questions using the power of MCMC

by playing a new match for each of the 380 matches using samples from the joint posterior densities for

all properties and at all times. By collecting the points and goals made we can compute a conditional
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sample of the final ranking. We repeat this procedure after each iteration in the MCMC, and compute

from all samples in the end the estimates we are interested in. (In this analysis we increased the prior

variance for all properties by a factor of 10, and similar with � to keep the conditional variance in (5)

unchanged. These near non-informative priors makes more sense in a retrospective analysis.)

Table 1 shows the estimated (posterior) probabilities for Arsenal, Manchester U, Liverpool and Chelsea

to be the first, second and third in the final ranking. The table shows also the observed rank and the

number of points achieved. Manchester U had probability :433 of winning the League while Arsenal

had :247. Liverpool and Chelsea have similar probabilities for being first, second and third. It seems

like Arsenal was lucky to win the title from Manchester U.

Figure 5 gives a more complete picture of the final ranking and displays the expected final rank for

each team with approximate 90% (marginal) credibility intervals. The solid line shows the observed

ranking. We see from the graph that Everton would have been unlucky to be relegated, and Aston Villa

did it better than expected. The uncertainty in the final ranking is surprisingly large, and the observed

rank seems to be well within the uncertainty bounds. Aston Villa, for example, could easily have been

15th instead of 7th. The managers surely have to face a lot of uncertainty. It is interesting to note from

the graph that the 20 teams divide themselves into four groups: The top four, upper middle seven, lower

middle seven, and the bottom two.

To study more how the top four teams differ and how their skills varied though the season, we compute

the (posterior) expected value of the offensive and defensive strength as a function of time. Figure 6

shows the result. The difference in defensive skills of the four teams are prominent, while their offen-

sive skills are more similar. Manchester U had a good and stable defence while their attack strength

decreased somewhat in the second half of the season. Denis Irwin was badly injured in December, and

might be one reason. Later in the season both Ryan Giggs and Nicky Butt suffered from injuries and

suspension causing attacking strength to decrease. The defensive skills of Arsenal improved during

the season while their offensive skills were best at the beginning and end of the season. Manchester U

defensive skills are superior to Arsenal’s during the hole season, while Manchester U’s offensive skills

are somewhat better in the period of October to March. In total, Manchester U seems to be the strongest

team. Liverpool and Chelsea have similar and stable defensive qualities, while there offensive is mono-

tone increasing for Liverpool and monotone decreasing for Chelsea. Arsenal is clearly ranked ahead

of Liverpool and Chelsea mainly due to their strong defence. Liverpool is ranked ahead of Chelsea as

they had both slightly better defence and attack properties on average. However, this is not a sufficient

condition in general; Also which teams they meet at which time is important.

An amusing application of the model appears if we treat the parameter � in Eq. (3) as a specific random

variable specific for each match, �tA;B , say. We assign prior probability 0:2 for this variable to be 1. This

induces a small change in the MCMC algorithm in the update of �tA;B (refer to the Appendix). We run

this modified model on the Premier League and ranked each match after the posterior probability for�tA;B to be 1. This probability has the interpretation as the probability for that match to be unexplainable

or an outlier, and hence gives a way of locating those matches that were most surprising taking both the

observed past and future into account. Table 2 list the five most surprising results in Premier League
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1997-98. The match between Liverpool and Barnsley November 22 where Barnsley won 0 � 1, is a

clear winner of being the surprise match of the season.

5 DISCUSSION AND FURTHER WORK

The presented model seems to grab most of the information contained in the match result and provide

reasonable predictions. The seemingly stability for the 
, � and � parameter across seasons, is one

confirmation. Although the number of variables are more than the number of data, we are not in the

situation of over-fitting the data. We take the (posterior) dependency between the attack and defence

strength at different time points as various ways to explain the data.

Further, the presented approach seems superior to the earlier attempts to model soccer games as it i)
allows for coherent inference of the properties between the teams also in time, ii) easily account for the

joint uncertainty in the variables which is important in prediction (Draper, 1995), iii) allows for doing

various interesting retrospective analysis of a season, and finally iv) provides a framework where is it

easy to change parts or parametrisation in the model. We do not claim that our parametrisation, goal

and time model is optimal and cannot be improved on, but that the presented Bayesian approach with

MCMC based inference seems promising for these kinds of problems.

There are several points which could and should be improved in the model.

DATA It is of major importance to include more data than just the final match-result into to the model,

but this depends on what kind of data are (easily) available and useful. No attempts are done

along these lines as far as we are aware of. This will imply a change of the model as well, but

the basic ideas and framework will remain.

TIME MODEL Brownian motion is a to simple time-model for the team’s properties and does not in-

clude the first derivative (local trend) in the predictions. A non-stationary time-model is needed

to capture the local behaviour needed for prediction in the near feature. An integrated autore-

gressive process might be suitable if we discretize the time which is quite reasonable. A such

choice require (among others) changes in move type 1 in MCMC algorithm described in the Ap-

pendix.

PARAMETER ESTIMATION We assumed that all teams have a common loss-of-memory rate � and this

is a simplification. We have not succeeded estimating a team-specific � , or found a good way

to group each team into a “high/normal/low” loss of memory rate. More observation data than

just the final match-result is most likely needed to make progress in this direction.

GOAL MODEL The goal model could be improved on. The birth-process approach of Dixon and Robin-

son (1998) is natural and interesting, although one should estimate the goal model simultane-

ously with the time varying properties, coherently. Further, various parametrisations like the

inclusion of the psychological effect and the idea of a mixture model, needs to be investiaged

further within their birth-process framework.
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HOME FIELD ADVANTAGE Each teams (constant) home field advantage is a natural variable to in-

clude in the model. We did not find sufficient support from the match results to include this at

the current stage, but hopefully more data will change this.

It seems like the statistical community are making progress in understanding the art predicting soc-

cer matches, which is of vital importance for two reasons: i) demonstrate the usefulness of statistical

modelling and thinking on a problem that most people really care about, and ii) make us all rich on

betting!
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FIGURE 1: Histogram of the number of home and away goals in 924 matches in the Premier League

1993-95.

P(1st) P(2nd) P(3rd) Rank Pts

Arsenal :247 :230 :161 1 78
Manchester U :433 :230 :131 2 77
Liverpool :110 :151 :153 3 65
Chelsea :095 :134 :142 4 63

TABLE 1: The estimated posterior probabilities for each team being the first, second and third in the

final ranking in Premier League 1997-98, together with the observed rank and the number of points

achieved.

Match Date prob(outlier) Result

Liverpool – Barnsley Nov 22 1997 :76 0 – 1
Newcastle – Leicester C Nov 1 1997 :66 3 – 3
Wimbledon – Tottenham May 2 1998 :61 2 – 6
Sheffield W – Manchester U Mar 7 1998 :60 2 – 0
Sheffield W – Arsenal Nov 22 1997 :59 2 – 0

TABLE 2: The five most surprising results in Premier League 1997-98, ranked according to the poste-

rior probability for being unexplainable or an outlier.
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FIGURE 2: The directed acyclic graph describing the causal structure in our model with four teams and

eight matches.
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FIGURE 3: The figures display the PL measure for the predictions made by the model and odds from

Intertops in Premier League and Division 1.
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FIGURE 4: The observed profit in the simulated betting experiments for the 1997-98 season in Premier

League and Division 1 using the predictions in Figure 3. The bets are on single matches against the

odds provided from Intertops.
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APPENDIX DETAILS OF THE MCMC ALGORITHM

This appendix contains details of our MCMC implementation sketched in Section 3.1. To ease the

implementation of the mixture model in Eq. (6), we will use an equivalent reformulation; Define �A;B
as an independent Bernoulli variable which is 1 with probability �, and define�g2 �xA;B; yA;B j �(x)A;B; �(y)A;B; �A;B� = ( ��g1 �xA;B; yA;B j �(x)A;B; �(y)A;B� if �A;B = 0��g1 �xA;B; yA;B j exp(c(x)); exp(c(y))� if �A;B = 1:

(9)

Then with obvious notation�g �xA;B; yA;B j �(x)A;B ; �(y)A;B� = E�A;B h�g2 �xA;B; yA;B j �(x)A;B; �(y)A;B ; �A;B�i :
Thus, we can attach one Bernoulli variables to each match and update also these variables in the MCMC

algorithm. We ignore their values in the output analysis where we consider only those components of� that is of our interest. This yields a correct procedure as the marginal distribution for � remains un-

changed when we include the Bernoulli variables.

Due to the reformulation of the mixture distribution, we need three different move types to implement

a MCMC algorithm for our model; 1) Update the properties for each team every time there is a match,2) update the match result for each unobserved match, and 3) update the Bernoulli variable for each

match. In each full sweep we visit all unobserved (stochastic) variables in a random order and update

each one using the appropriate move type.

MOVE TYPE 1. UPDATING ONE OF THE PROPERTIES We describe only how we update the attack

strength at00A for team A at time t00 using a Metropolis step, as the update of the defence strength is

similar. Note that all other variables remain constant when we propose an update for at00A . We assume

team A play a match against team B at time t00 and at A’s home-ground, as the acceptance rate when A
plays on B’s home-ground is similar with obvious changes. Let t0 and t000 be the times of the previous

and following match for team A. We will soon return to the case when there is no previous and/or

following match. Denote by (xt00A;B ; yt00A;B) and �t00A;B the (current, if not observed) number of goals in

the match and the Bernoulli variable attached to that match, respectively.

We sample first a new proposal for at00A from a Gaussian (symmetric) distribution, at00;newA � N(at00A ; �2q ),
where �2q is a fixed constant for all teams, attack and defence. For all our examples in Section 4, we

used �2q = 0:052. The new proposal is accepted with probability minf1; Rg, whereR = �(at00;newA j at0A)�(at00A j at0A) �(at000A j at00;newA )�(at000A j at00A ) �g2 �xt00A;B; yt00A;B j �(x);t00;newA;B ; �(y);t00;newA;B ; �t00A;B��g2 �xt00A;B; yt00A;B j �(x);t00A;B ; �(y);t00A;B ; �t00A;B� (10)

otherwise we remain in the old state. In Eq. (10), �(at00;newA j at0A) denote the conditional Gaussian

density for at00A given at0A evaluated at at00;newA . Further is �(x);t00;newA;B computed from Eq. (1) using the
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proposed new value at00;newA;B and so on. If there is no previous match, then �(at00;newA j at0A) and �(at00A jat0A) is replaced with the prior density for aA evaluated at at00;newA and at00A , respectively. If there is no

following match, then we remove �(at000A j at00;newA ) and �(at000A j at00A ) in the expression for R.

We prefer this simple Metropolis step compared to the more elegant proposal density found from com-

puting the Gaussian approximation to the conditional density, by a second order Taylor expansion of

the log conditional density around current values. Although the acceptance rate with a tailored Gaus-

sian proposal increase to well over 90%, it does not seems to be worth the additional computation and

implementation costs.

MOVE TYPE 2. UPDATING A MATCH RESULT We update the match result using a Gibbs-step, thus

drawing (xt00A;B; yt00A;B) from the conditional distribution in Eq. (9). The modifications needed due to

truncation and �(xt00A;B; yt00A;B j �(x);t00A;B ; �(y);t00A;B ), are easily done by rejection steps. The algorithm is as

follows.

1. If �t00A;B is 1, then set �(x) = exp(c(x)); and �(y) = exp(c(y))
otherwise set �(x) = �(x);t00A;B and �(y) = �(y);t00A;B :

2. Draw x from Po(x j �(x)) until x � 5, and then draw y from Po(y j �(y)) until y � 5.

3. With probability � �x; y j �(x); �(y)�maxf1:1; 1 + 0:1�(x)�(y)g
set xt00A;B = x and yt00A;B = y and return, otherwise go back to 2.

MOVE TYPE 3. UPDATING A BERNOULLI VARIABLE We update the Bernoulli variable attached

to each match, �t00A;B , say, by using a Gibbs step. We set �t00A;B to 1 with probability �, and to 0 with

probability 1� �.
MOVE TYPE 30 . UPDATING A BERNOULLI VARIABLE WHILE COMPUTING TABLE 2 In this case,

the Bernoulli variable attached to each match, �t00A;B , is a random variable with prior probability � to be

1. Thus the update rule will differ from move type 3. We propose always to flip the current value of�t00A;B to �t00;newA;B = 1� �t00A;B which is accepted with probability minf1; Rg,R = �g2 �xt00A;B; yt00A;B j �(x);t00A;B ; �(y);t00A;B ; �t00;newA;B ��g2 �xt00A;B; yt00A;B j �(x);t00A;B ; �(y);t00A;B ; �t00A;B� ��t00;newA;B + (1� �)(1 � �t00;newA;B )��t00A;B + (1� �)(1 � �t00A;B) :
22



A COMMENT ON IMPLEMENTATION The model is easiest programmed as a graph-model (see Fig-

ure 2) parsing matches with teams, dates, etc. from external input files. The described MCMC algo-

rithm can be modified in several ways to achieve significant speedup. Our approach was to tabulate

the truncated Poisson distribution for a large set of �’s, and then use a table lookup with interpolation

to obtain values. The normalisation constants for the joint density ��g1(xA;B; yA;B j �(x)A;B; �(y)A;B) is

also needed as a function of (�(x)A;B; �(y)A;B), which we once more tabulate. It is probably most efficient

to tabulate �g �xA;B; yA;B j �(x)A;B; �(y)A;B� directly. This approach require more memory, and prohibit

the analysis of the most surprising matches presented in Table 2. On the other hand, it does not require

the above reformulation of the mixture distribution.

A COMMENT ON RAO-BLACKWELLISATION To predict a future match, A against B say, it is nat-

ural to consider the simulated result (xA;B ; yA;B) of that match and estimate the probability for A
win against B by counting how many times xA;B is grater than yA;B and divide by the total num-

ber. However, we can decrease the variance of this estimator by Rao-Blackwellisation; We compute

Pr(A wins over B j eA;eB) and use the empirical mean of this conditional probability as our esti-

mate for the probability that A win against B. (Again, we tabulate these probabilities and use table

lookup with interpolation.) We refer to Liu, Wong and Kong (1994) for a theoretical background of

Rao-Blackwellisation in this context.
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